Biochemical Discrimination between Selenium and Sulfur 1: A Single Residue Provides Selenium Specificity to Human Selenocysteine Lyase
نویسندگان
چکیده
Selenium and sulfur are two closely related basic elements utilized in nature for a vast array of biochemical reactions. While toxic at higher concentrations, selenium is an essential trace element incorporated into selenoproteins as selenocysteine (Sec), the selenium analogue of cysteine (Cys). Sec lyases (SCLs) and Cys desulfurases (CDs) catalyze the removal of selenium or sulfur from Sec or Cys and generally act on both substrates. In contrast, human SCL (hSCL) is specific for Sec although the only difference between Sec and Cys is the identity of a single atom. The chemical basis of this selenium-over-sulfur discrimination is not understood. Here we describe the X-ray crystal structure of hSCL and identify Asp146 as the key residue that provides the Sec specificity. A D146K variant resulted in loss of Sec specificity and appearance of CD activity. A dynamic active site segment also provides the structural prerequisites for direct product delivery of selenide produced by Sec cleavage, thus avoiding release of reactive selenide species into the cell. We thus here define a molecular determinant for enzymatic specificity discrimination between a single selenium versus sulfur atom, elements with very similar chemical properties. Our findings thus provide molecular insights into a key level of control in human selenium and selenoprotein turnover and metabolism.
منابع مشابه
Biochemical Discrimination between Selenium and Sulfur 2: Mechanistic Investigation of the Selenium Specificity of Human Selenocysteine Lyase
Selenium is an essential trace element incorporated into selenoproteins as selenocysteine. Selenocysteine (Sec) lyases (SCLs) and cysteine (Cys) desulfurases (CDs) catalyze the removal of selenium or sulfur from Sec or Cys, respectively, and generally accept both substrates. Intriguingly, human SCL (hSCL) is specific for Sec even though the only difference between Sec and Cys is a single chalco...
متن کاملExpression of a mouse selenocysteine lyase in Brassica juncea chloroplasts affects selenium tolerance and accumulation
Selenium is an essential nutrient for many organisms, as part of certain selenoproteins. However, selenium is toxic at high levels, which is thought to be due to non-specific replacement of cysteine by selenocysteine leading to disruption of protein function. In an attempt to prevent non-specific incorporation of selenocysteine into proteins and to possibly enhance plant selenium tolerance and ...
متن کاملThe functions of NifS-like proteins in plant sulfur and selenium metabolism
NifS-like proteins were originally studied in bacteria, where they play an important role in sulfur (S) and selenium (Se) metabolism. NifS-like proteins, now thought to exist in all organisms, are best known for their cysteine desulfurase activity that catalyzes the conversion of cysteine into alanine and elemental S needed for various cofactors: iron–sulfur clusters, thiamine, biotin and molyb...
متن کاملFunctions and cellular localization of cysteine desulfurase and selenocysteine lyase in Trypanosoma brucei.
Nfs-like proteins have cysteine desulfurase (CysD) activity, which removes sulfur (S) from cysteine, and provides S for iron-sulfur cluster assembly and the thiolation of tRNAs. These proteins also have selenocysteine lyase activity in vitro, and cleave selenocysteine into alanine and elemental selenium (Se). It was shown previously that the Nfs-like protein called Nfs from the parasitic protis...
متن کاملSelenium-containing enzymes in mammals: Chemical perspectives
The chemical and biochemical route to the synthesis of the 21st amino acid in living systems, selenocysteine, is described. The incorporation of this rare amino acid residue into proteins is described with emphasis on the role of monoselenophosphate as selenium source. The role of selenocysteine moiety in natural mammalian enzymes such as glutathione peroxidase (GPx), iodothyronine deiodinase (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012